eButton: A Wearable Computer for Evaluation of Diet, Physical Activity and Lifestyle

Wenyan Jia, Ph. D.

Department of Neurosurgery

University of Pittsburgh

-dVices 4 Food

August 28, 2015

Overweight and Obesity

- ~65% of American adults are overweight (body mass index (BMI) ≥25 kg/m²)
- ~ 20% of the US population are obese (BMI ≥30 kg/m²)
- Obesity has become an increasing public health problem for almost all developed countries and many developing countries

What causes obesity

- Energy imbalance over a long time
- Energy in > Energy out
- Too much calories
- Too less physical activity

Despite the rapid advances in technology, diet and physical activity evaluation still relies on self-reporting instruments (e.g., 24-hour recalls and FFQ)

Problems of Self-Reporting

- Limited memory of recalling consumed foods
- Inaccurate portion size recall and estimate bias
- Unwillingness in reporting
- High respondent burden

We need an objective device for the assessment that does not fully depend on subjects' words

Record meals to be eaten using cell phones

Lenore Arab et al., Eur J Clin Nutr, 2011, 65(10):1156-1162

L Gemming, et al., Eur J Clin Nutr, 2013, 67, 1095-1099

Dietary assessment based on digital pictures

- Taking pictures before meal (and after meal if there is a left-over)
- Providing an electronic memory
- Low cost (when subject has a cell phone)
- Allowing portion size estimate
- Nutrient and calorie analysis is difficult

iPhone app "Mealsnap" by Daily Burn

"Use Mechanical Turk to identify the foods at anywhere from \$0.02-\$0.05 per picture and then use the data returned from Mechanical Turk to search for calorie information in a database of food"

http://www.quora.com/How-does-Daily-Burns-Meal-Snap-applicationwork

Physical activity assessment based on accelerometer

Problems

- Accelerometer based devices cannot monitor diet
- They are very limited in behavioral monitoring

Our Approach: Wearable Device

We built a wearable computer eButton to document lifestyle and events

Sensors within eButton

- Video camera(s) to look around (e.g., food)
- **GPS** to find the wearer's location
- 3-axis accelerometer to study motion
- Daylight/UV sensor to detect indoor or outdoor
- 3-axis gyroscope to measure body orientation
- Barometer to determine body position/floor level

eButton vs. smartphone

- can look around by itself
- is much smaller and lighter
- can be worn naturally on the chest
- lasts longer between recharging
- supports flexible designs for specific healthcare applications

What can Button evaluate?

Objective assessments of:

- Food intake (in kcal)
- Physical activity (in kcal)
- Living and built environments (descriptive)
- Diet and PA related behavior (descriptive)
- Lifestyle (descriptive)

Typical Videos

eButton Application 1: Diet Assessment

How does eButton evaluate diet?

Food volume estimation based on virtual reality (VR)

A study on food volume estimation

- Participants wore an eButton during their lunch
- Images of 100 food samples (fifty Western and fifty Asian foods) were collected
- The volume of food in each eButton picture was calculated using our software
- The actual volume was determined by physical measurement using seed displacement

Measurement results - lunch

50 Asian foods

eButton Application 2: Physical Activity Assessment

Methods to measure calorie expenditure

Method 1: based on accelerometer

Calculate from the magnitude of the accelerometer output

http://www.eightsandweights.com/2013/11/j awbone-up-vs-fitbit-flex.html

Method 2: based on images

Manually recognize physical activity(PA) event from images, and then use a table look up (PA Compendium) to get MET value

Physical activity	MET
Light intensity activities	< 3
sleeping	0.9
watching television	1.0
writing, desk work, typing	1.8
walking, 1.7 mph (2.7 km/h), level ground, strolling, very slow	2.3
walking, 2.5 mph (4 km/h)	2.9
Moderate intensity activities	3 to 6
bicycling, stationary, 50 watts, very light effort	3.0
walking 3.0 mph (4.8 km/h)	3.3
calisthenics, home exercise, light or moderate effort, general	3.5
walking 3.4 mph (5.5 km/h)	3.6
bicycling, <10 mph (16 km/h), leisure, to work or for pleasure	4.0
bicycling, stationary, 100 watts, light effort	5.5
Vigorous intensity activities	> 6
jogging, general	7.0
calisthenics (e.g. pushups, situps, pullups, jumping jacks), heavy, vigorous effort	8.0
running jogging, in place	8.0
rope jumping	10.0

MET: Metabolic Equivalent

https://sites.google.com/site/compendiumofphysicalactivities/

eButton Application 3: Lifestyle Assessment

Automatic event segmentation

Input Image Sequence

Manual categorization of daily events

Categorization of activities

Indoor Activities

- Sedentary activities
- Light activities
- Moderate to vigorous activities

Outdoor Activities

- Sedentary activities
- Light activities
- Moderate to vigorous activities

Lifestyle summary (one week)

Summary

Inventor

- Professor Mingui Sun, Ph.D.
 - drsun@pitt.edu
 - -412-802-6481

Our Website

• <a>www.lcn.pitt.edu/eButton

Acknowledgments

Funding: NIH U01HL091736 (PI: Mingui Sun) NIH R01CA165255 (PI: Mingui Sun) NIH R21CA172864 (PI: Tomas Baranowski, Co-PI: Mingui Sun)

Participated Institutes and Professors:

University of Pittsburgh:

. . .

John FernstromRobert SclabassiZhi-Hong MaoLora BurkeMadelyn FernstromJames DeLanyJanice ZgiborSteven AlbertGibbs BethanyBaylor College of Medicine:Tomas BaranowskiUniversity of Michigan:Juliet LumengUniversity of Rochester:Diana FernandezFurtwangen University(Germany):Stefan Selke & Iris Menke

Numerous undergraduate, graduate students and postdoctoral fellows

Thank you for your attention